Tetrahedron Letters 51 (2010) 1937-1938

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A novel method for the 1,2-carbonyl transposition of pleuromutilins

Céline Duquenne, Timothy F. Gallagher, Jeffrey M. Axten*

Department of Medicinal Chemistry, Infectious Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, PA 19426, USA

ABSTRACT

ARTICLE INFO

Revised 29 January 2010

Accepted 3 February 2010 Available online 7 February 2010

Article history:

Received 8 January 2010

A new and efficient 1.2-carbonyl transposition procedure for the formation of 2-keto pleuromutilin compounds is described. The synthetic sequence is performed in four steps and 26% overall yield. © 2010 Elsevier Ltd. All rights reserved.

Pleuromutilin is a naturally occurring, structurally complex tricyclic diterpene antibiotic first isolated in 1951 from basidiomycetes microorganisms.¹ Optimization of the antibacterial activity, concentrating predominantly on modifying the ester side-chain at C-14. led to the approval of the veterinary drug tiamulin (Fig. 1).² There are no pleuromutilin compounds approved for oral human use³ in part because of their rapid first-pass metabolism to a pool of hydroxylated metabolites (predominantly C-2 and C-8 hydroxylation) which are mostly devoid of antibacterial activity.⁴ Throughout the 1970s and 1980s, chemists at Sandoz disclosed numerous accounts rich in pleuromutilin chemistry documenting their effort to improve the metabolic stability of the mutilin tricyclic core.⁵ More recent reports have emerged revealing similar strategies.^{6,7}

Similar to previous approaches to minimize or block metabolic oxidation at the 2-position, we aimed to prepare an isomeric mutilin with the ketone at C-2 of the tricyclic core as a valuable intermediate for further manipulation. It was reported by Berner that 2-keto-19,20-dihydromutilin 3 can be synthesized from 1 via isomerization of the α -hydroxy ketone **2** followed by reduction of the corresponding acetate with lithium metal (Scheme 1).⁸ We obtained low yields of **3** after isolation from a complex mixture of products, which included α -hydroxyketone isomers and mixtures of acetvlated products derived from 1. 2. and 3.

We began to investigate alternative routes to prepare 2-keto mutilin compounds, and quickly realized that the many 1.2-carbonyl transpositions methods reported failed when attempted on the tricyclic core of mutilin.⁹ Ultimately, we discovered a straightforward and practical method for the 1,2-carbonyl transposition of 10,14-diacetyl-19,20-dihydromutilin 4 (Scheme 2). Following reduction of 4, we chose to prepare the mesylate of 5 as a suitable precursor of a delta $\Delta^{2,3}$ -olefin. However, treatment of **5** with

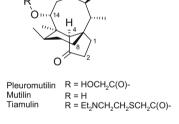
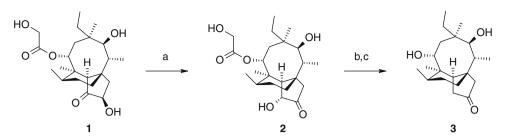
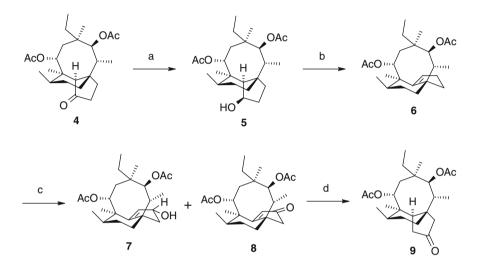


Figure 1. Structures of pleuromutilin, mutilin, and tiamulin.

methanesulfonyl chloride led directly and regiospecifically to $\Delta^{3,4}$ -unsaturated **6**. The absence of the mesylate product in the reaction mixture suggests that the elimination proceeds smoothly and is highly favored for the $\Delta^{3,4}$ -isomer. The precise mechanism for product formation is not clear but can be rationalized as either (1) direct elimination or (2) isomerization of the $\Delta^{2,3}$ -isomer.¹⁰

Application of a dirhodium(II) caprolactamate catalytic allylic oxidation¹¹ to **6** afforded the enone **8** in 40% yield without overoxidation,¹² along with the allylic alcohol **7** as a single diastereomer.¹³ Use of a dissolving metal reduction¹⁴ allowed for the regeneration of the natural mutilin stereochemistry at C-4 to give 9 in 20% yield. The side products were isolated individually in a combined 44% yield and identified as the monoacetylated products.


In summary, we have developed a new approach for the 1,2carbonyl transposition of pleuromutilin derivatives which requires only four practical steps.¹⁵ Facile and regiospecific formation of a $\Delta^{3,4}$ -mutilin set the stage for a dirhodium catalyzed allylic oxidation followed by a selective enone reduction to selectively regenerate the C-4 stereochemistry. This new, short, and convenient method provides access to novel pleuromutilin analogs.



^{*} Corresponding author. Tel.: +1 610 917 7899.

E-mail address: Jeffrey.M.Axten@gsk.com (J.M. Axten).

Scheme 1. Berner synthesis of 2-ketomutilin 3. Reagents and conditions: (a) KOH, (Bu)₄NHSO₄, CH₂Cl₂, H₂O (76%); (b) acetic anhydride, pyridine (74%); and (c) Li (s), NH₃ (liq), Et₂O.

Scheme 2. Synthesis of 2-ketomutilin 9. Reagent and conditions: (a) NaBH₄, EtOH/THF (98%); (b) CH₃SO₂Cl, triethylamine, CH₂Cl₂ (87%); (c) Rh₂(cap)₄, K₂CO₃, CH₂Cl₂ (40% 7/ 47% 8); and (d) Li, NH₃, Et₂O/THF (20% + 44% monoacetylated products).

Acknowledgment

We thank Ms. Priscilla Offen for NMR spectroscopic analysis and characterization.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.02.014.

References and notes

- (a) Kavanagh, F.; Hervey, A.; Robbins, W. J. Proc. Natl. Acad. Sci. U.S.A. 1951, 37, 570–574; (b) Knausedar, F.; Brandle, E. J. Antibiot. 1976, 29, 125–131; For a review of pleuromutilin antibiotics see: (c) Hunt, E. Drugs Future 2000, 25, 1163–1168.
- 2. Högenaur, G. Antibiotics (New York) 1979, 5, 344-360.
- Retapamulin is approved for topical human use: Scangarella-Oman, N. E.; Shawar, R. M.; Bouchillon, S.; Hoban, D. Expert Rev. Anti Infect. Ther. 2009, 7, 269–279.
- Schuster, I.; Fleschurz, C.; Hildebrandt, J.; Turnowsky, F.; Zsutty, H.; Kretschmer, G. 13th International Congress of Chemotherapy, Vienna, Aug 28, 1983, Abstract PS 4.6/2-11.
- (a) Berner, H.; Schultz, G.; Fischer, G. Monatsh. Chem. 1981, 112, 1441–1450; (b) Berner, H.; Vyplel, H.; Schultz, G.; Stuchlik, P. Monatsh. Chem. 1983, 114, 1125–

1136; (c) Bermer, H.; Vyplel, H.; Schultz, G. Tetrahedron **1987**, 43, 765–770. and references cited therein.

- (a) Springer, D. M.; Sorenson, M. E.; Huang, S.; Connolly, T. P.; Bronson, J. J.; Matson, J. A.; Hanson, R. L.; Brzozowski, D. B.; LaPorte, T. L.; Patel, R. N. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1751–1753; (b) Springer, D. M.; Goodrich, J. T.; Luh, B.; Bronson, J. J.; Gao, Q.; Huang, S.; DenBleyker, K.; Dougherty, T. J.; Fung-Tomc, J. *Lett. Drug Des. Disc.* **2008**, *5*, 327–331.
 (a) Brooks, G.; Burgess, W.; Colthurst, D.; Hinks, J. D.; Hunt, E.; Pearson, M. J.;
- (a) Brooks, G.; Burgess, W.; Colthurst, D.; Hinks, J. D.; Hunt, E.; Pearson, M. J.; Shea, B.; Takle, A. K.; Wilson, J. M.; Woodnutt, G. *Bioorg. Med. Chem. Lett.* **2001**, 9, 1221–1231; (b) Brooks, G.; Hunt, E. PCT Int. Appl. WO 2001074788 A1, 2001.; (c) Brown, P.; Hunt, E. PCT Int. Appl. WO 2004089886, 2004.
- Berner, H.; Vyplel, H.; Schulz, G.; Fischer, G. Monatsh. Chem. 1985, 116, 1165– 1176. Compound 1 is available in four steps from 19,20-dihydropleuromutilin.
- Kane, V.; Singh, V.; Martin, A.; Doyle, D. *Tetrahedron* **1983**, *39*, 345–394. In addition to methods of ketone α-hydroxylation, we also attempted methods using sulfenylation or dithioketal formation at C-2 from a 2-hydroxymethylene multilin intermediate.
 The only reported Δ^{2,3}-mutilin compound with the natural C-4 stereochemistry
- The only reported Δ^{2.3}-mutilin compound with the natural C-4 stereochemistry is a silylenol ether, which is capable of isomerizing to the Δ^{3.4}-isomer: Wang, H.; Andemichael, Y. W.; Vogt, F. G. J. Org. Chem. **2009**, 74, 479–481.
- 11. Catino, A. J.; Forslund, R. E.; Doyle, M. P. J. Am. Chem. Soc. 2004, 126, 13622-13623.
- 12. Use of CrO₃ for this oxidation was unsatisfactory and produced multiple overoxidation products.
- 13. The stereochemistry was confirmed by NMR data showing a NOE between H2 and H11.
- House, H. In Modern Synthetic Reactions; Breslow, R., Ed., 2nd ed.; W. A. Benjamin, Inc.: USA, 1972; pp 173–190.
- 15. See Supplementary data for experimental procedures and compound characterization.